Long-lasting NMDA receptor-mediated EPSCs in mouse striatal medium spiny neurons.
نویسندگان
چکیده
Excitatory postsynaptic currents (EPSCs) from dorsolateral medium spiny neurons (MSNs) were recorded in cortico-striatal slice preparations from postnatal day 6-8 (P6-8) and >P12 wild-type mice and mice that were lacking either the NR2A or the NR2C subunit of the N-methyl-D-aspartate (NMDA) receptor. EPSCs were elicited by stimulation of the excitatory afferents and the NMDA and non-NMDA receptor-mediated components were pharmacologically isolated. The ratio of these components decreased with development and was significantly reduced only between age-matched +/+ and NR2A -/- neurons. In many MSNs, the NMDA-EPSC decay was characterized by the presence of a slow exponential component with a time constant lasting >1 s regardless of genotype or age. In the NR2A -/-, no developmental increase in the decay time (Tw) of the NMDA-EPSCs was observed although it was almost twofold longer than in +/+ MSNs. NR1/NR2B antagonists were ineffective in reducing the slow NMDA-EPSCs at all ages. Input-output studies revealed differences in stimulation threshold sensitivity of MSNs based on stimulus location. High-threshold responders were preferentially identified with stimulation from intracortical locations that produced considerably faster NMDA-EPSCs, whereas low-threshold responders were mainly elicited with stimulation more proximal to the striatum and exhibited slower NMDA-EPSCs. A low-affinity competitive antagonist of NMDA receptors failed to alter the decay of NMDA-EPSCs elicited from either location, suggesting that glutamate spillover is not responsible for the long-lasting NMDA-EPSCs. Our data are consistent with the expression of a unique NMDA receptor complex in MSNs with very slow deactivation kinetics.
منابع مشابه
Excitatory and inhibitory synapses in neuropeptide Y-expressing striatal interneurons.
Although rare, interneurons are pivotal in governing striatal output by extensive axonal arborizations synapsing on medium spiny neurons. Using a genetically modified mouse strain in which a green fluorescent protein (GFP) is driven to be expressed under control of the neuropeptide Y (NPY) promoter, we identified NPY interneurons and compared them with striatal principal neurons. We found that ...
متن کاملOnset of Pup Locomotion Coincides with Loss of NR2C/D-Mediated Cortico-Striatal EPSCs and Dampening of Striatal Network Immature Activity
Adult motor coordination requires strong coincident cortical excitatory input to hyperpolarized medium spiny neurons (MSNs), the dominant neuronal population of the striatum. However, cortical and subcortical neurons generate during development large ongoing patterns required for activity-dependent construction of networks. This raises the question of whether immature MSNs have adult features f...
متن کاملComplex response to afferent excitatory bursts by nucleus accumbens medium spiny projection neurons.
The nucleus accumbens (NAc) of the ventral striatum is involved in attention, motivation, movement, learning, reward, and addiction. GABAergic medium spiny projection neurons that make up approximately 90% of the neuronal population are commonly driven by convergent bursts of afferent excitation. We monitored spiny projection neurons in mouse striatal slices while applying stimulus trains to mi...
متن کاملDopamine Preferentially Inhibits NMDA Receptor-Mediated EPSCs by Acting on Presynaptic D1 Receptors in Nucleus Accumbens during Postnatal Development
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather ...
متن کاملIncreased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington's Disease
Previous work suggests N-methyl-D-aspartate receptor (NMDAR) activation may be involved in degeneration of medium-sized spiny striatal neurons in Huntington's disease (HD). Here we show that these neurons are more vulnerable to NMDAR-mediated death in a YAC transgenic FVB/N mouse model of HD expressing full-length mutant huntingtin, compared with wild-type FVB/N mice. Excitotoxic death of these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 5 شماره
صفحات -
تاریخ انتشار 2007